

DBY-1603010702020700 Seat No. _____

M. Sc. (Sem. II) (CBCS) Examination

July - 2022

CT-7: Physics

(Space Physics)

Time : $2\frac{1}{2}$ Hours]

[Total Marks: 70

Instruction: Attempt all questions. The figures on right indicate marks.

1 Answer any **seven** of the following:

14

- (1) Define the scale height and write the equation.
- (2) List the parameters which can be derived using Langmuir probe.
- (3) Write the chemical composition of the Sun.
- (4) Why the geomagnetic filed is so important?
- (5) Draw the Earth's geomagnetic cavity and name the regions.
- (6) Draw the energy level diagram of atomic oxygen.
- (7) What is solar flare?
- (8) Explain the Snell's law of refraction.
- (9) What is GPS and for which purpose it is used?
- (10) Name any two empirical models of the atmosphere.
- 2 Answer any two of the following.

14

- (a) Explain the physical processes 'Enthalpy' and 'Entropy' with example.
- (b) Derive the integral form of hydrostatic equilibrium.
- (c) Classify the Earth's atmosphere based on vertical temperature profile. Explain each region in detail.

3	Answer the following:		14
	(a)	What are the assumptions of the Chapman for ionospheric production? Derive the equation for production function.	
	(b)	Describe the morphology of the ionosphere.	
		OR	
3	Answer the following:		14
	(a)	Discuss how the radio wave is refracted by the ionosphere.	
	(b)	Explain the working and application of Ionosonde.	
4	Answer any two of the following:		14
	(a)	Define the spectral reflectance. Show how the spectral signature is useful in identifying the different classes of tree.	
	(b)	Discuss the Earth's surface feature interaction with solar radiation. What are the different types of reflectors?	
	(c)	Describe the interaction of solar radiation with Earth's atmosphere. Define the term 'Atmospheric Window'.	
5	Write short notes on any two of the following:		14
	(a)	Thermal balance in the Earth's atmosphere.	
	(b)	Production and loss of stratospheric ozone in the atmosphere.	
	(c)	Langmuir probe and Mass spectrometer techniques.	
	(d)	Scatter radar and its applications.	